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Helically corrugated waveguides have recently been studied for use in various applications such as interac-
tion regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive
medium for passive microwave pulse compression. The paper presents a summary of various methods that can
be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical
approach, simulations with the three-dimensional numerical codeMAGIC, and cold microwave measurements
are analyzed and compared.
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I. INTRODUCTION

Metal hollow waveguides with various types of periodic
corrugation are widely used in high-power microwave elec-
tronics. One such structure that has recently attracted consid-
erable interest consists of a helical corrugation in the wall of
a circular cylindrical waveguide, which involves both axial
and azimuthal periodicity. This provides asymmetry of the
wave dispersion for circularly polarized modes, resulting in
additional mode selection. These properties make
waveguides with a helical corrugation attractive for a large
number of applications. In particular, they have been used as
slow-wave interaction structures in relativistic Cherenkov
devices[1], in Bragg reflectors[2], and as mode converters
(see, e.g.,[3]), etc. Helically corrugated waveguides have
recently been successfully used as interaction regions in gy-
rotron traveling-wave tubes(GTWTs) [4,5], and gyrotron
backward-wave oscillators(GBWOs) [5–7] and as a disper-
sive medium for passive microwave pulse compression[8].
Due to this wide applicability, it is relevant and important to
investigate the electrodynamic properties of such
waveguides by analytical and numerical techniques, confirm-
ing the validity of the methods by comparison with experi-
mental measurement.

The most general and simple method for theoretical
analysis of the dispersion characteristics and electromagnetic
field structure in waveguides with any type of shallow cor-
rugation is the method of perturbation, which is based upon
replacement of the corrugated surface by a cylindrical sur-
face but with fictitious magnetic currents[9,10]. This method
provides reasonable accuracy when the corrugation depth is
much smaller than the operating wavelength. For the theo-
retical analysis of waveguides with comparatively large am-
plitude helical corrugations, it is possible to use one of the
available computer codes based on the finite-difference
evaluation of the full three-dimensional(3D) Maxwell equa-
tions. In this paper the time-domain codeMAGIC [11] is used
to simulate wave propagation through the structures, with the
results from the simulations compared to those from the
method of perturbation and experiments. Two different ex-
perimental methods of measuring the wave dispersion are
also presented in this paper.

The waveguides studied were used in GTWT/GBWO ex-
periments[4,7] and in frequency-swept pulse compression
experiments[8]. It is important to note that these applica-
tions rely on significantly different mode dispersion for their
operation. For a GTWT the most favorable operating wave is
that which has a constant and sufficiently high group velocity
over a wide frequency band in the region of close-to-zero
axial wave number. In contrast, the operating wave for a
pulse compressor should have a strong frequency dependent
group velocity over a frequency band which is separated
from the cutoff frequency of the waveguide. These very dif-
ferent requirements can both be satisfied by waveguides with
quite similar geometry. In both cases the parameters of the
helical corrugation are chosen such that two modes, one
close to cutoff and one propagating, are resonantly coupled.

In Sec. II the principles of synthesizing the necessary dis-
persion and its qualitative characteristics are discussed. In
Sec. III an analytical approach is presented which is based on
solution of a dispersion equation derived from the coupled-
mode theory. In Secs. IV and V the techniques used to obtain
the wave dispersion from experimental measurement and
from MAGIC simulations, respectively, are presented. In Secs.
VI some examples of helically corrugated waveguide are
analyzed, and results obtained from the various methods pre-
sented are compared and discussed.

II. PRINCIPLE OF THE DISPERSION SYNTHESIS

Let us consider a waveguide with the helical profile of its
inner surface represented in a cylindrical coordinate system
sr ,w ,zd as follows:

rsw,zd = r0 + l cossmBw + kBzd. s1d

Here r0 is the mean radius of the waveguide,l is the ampli-
tude of the corrugation,mB and kB=2p /d define the azi-
muthal number and axial component of the Bragg periodicity
vector, respectively, andd is the corrugation period. For sim-
plicity, consider only two circularly polarized modes 1 and 2
having azimuthal numbersm1 andm2, respectively(the posi-
tive value ofm is defined for right-handed modes), with axial
wave numberskz1 andkz2 in the absence of the corrugation
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sl =0d obeying the dispersion equation for a smooth wave-
guide:

k2 = kzi
2 + kti

2, i = 1,2, s2d

wherek=v /c is the wave vector(v is the angular frequency,
c is the speed of light), kti =ni / r0 is its transverse component
for each mode, andni is the root of the derivative of the
corresponding Bessel function(here n2.n1). In a periodi-
cally corrugated waveguide the electromagnetic field can be
represented as a superposition of the spatial harmonics,
which, at negligibly small corrugation amplitude, possess the
dispersion characteristics of the smooth waveguide modes
[Eq. (2)] (partial modes) shifted along the axial-wave-
number axis by an integer number of the Bragg periodicity
vectorkB (Fig. 1). At nonzero amplitude of the corrugation,
resonant coupling between the modes occurs when their
axial and azimuthal wave numbers satisfy the Bragg condi-
tions

kz1 − kz2 = kB, m1 − m2 = mB. s3d

This coupling results in the appearance of eigenwaves whose
dispersions can be represented as splitting of the partial
mode dispersions near the frequencies of their intersections
with dispersions of the spatial harmonics as shown in Fig. 1.

A helical wall perturbation can provide selective coupling
between a higher and a lower circularly polarized mode,
avoiding the Bragg reflection zones, which would inevitably
appear in the case of an axisymmetric corrugation because of
coupling between, for example, forward- and backward-
propagating spatial harmonics of mode 1. If the coupling
occurs in the frequency region close to the cutoff of mode 2,
ukz2u!k0 (here and henceforth we will use the designation of
kz1 and kz2 for the values of the corresponding axial wave
numbers taken at the wave vectork0 of exact Bragg reso-
nance), then one of the eigenwaves, namely, the fundamental
spatial harmonic(modeW2 in Fig. 1), which can be consid-
ered as a modified mode 2, can have a dispersion that is
attractive for either gyro devices or pulse compressors. This
eigenwave can have a positive group velocity at zero axial
wave number.

In fact, a larger corrugation amplitude(which controls the
dispersion splitting) and a zero or positive value ofkz2
(which is controlled by the corrugation period) result in a

larger eigenwave group velocity, which can be made almost
constant over a wide frequency band. Moreover, the cutoff
frequency of the undesirable upper eigenmodeWu2 (Fig. 1)
can be sufficiently upshifted. In this case, the modeW2 is
attractive as an operating mode in a GTWT. In contrast, if
the coupling is sufficiently weak and the value ofkz2 is nega-
tive then the group velocity of the eigenwave changes from a
high value of the mode 1 to a very small value of mode 2
within a rather narrow frequency band. With an appropriate
choice of parameters, it is possible to avoid regions with zero
or negative group velocity, and then this configuration be-
comes favorable for the realization of pulse compression.

In both cases the frequency band of main interest is
mostly situated below the cutoff frequency of mode 2, and
therefore, by having a sufficiently smooth down-tapering of
the corrugation amplitude, the eigenmode, which is essen-
tially a superposition of spatial harmonicsW2 andW1, totally
transforms into partial mode 1. In practice, an operating
structure consists of a section with a regular corrugation
bounded on each side by a taper with gradually tapered cor-
rugation amplitude that meets a waveguide having mean ra-
dius r0, with the lower mode 1 used to inject and extract the
microwave energy from the structure. Therefore, in this pa-
per, the operating eigenwave of a helically corrugated wave-
guide will be interpreted as the modified or strongly per-
turbed mode 1, and will be represented in the dispersion by
the modeW1 shown in the diagrams. In experiments with the
use of the helical waveguides in gyro devices and in pulse
compression experiments a threefoldsumBu=3d helical corru-
gation(Fig. 2) was used that coupled the TE2,1 (mode 2) and
the TE1,1 (mode 1) circularly polarized modes of opposite
rotation.

III. ANALYTICAL APPROACH

When the corrugation amplitudel is small compared with
the wavelength, the modes of the helically corrugated wave-
guide can be found using the method of perturbation and the
coupled-mode theory[10,12], leading to the eigenmode dis-
persion equation

sk2 − kz
2 − kt1

2 dfk2 − skz − kBd2 − kt2
2 g = 4k2k0

4, s4d

where

k =
l

2r0
3k0

2

n1
2n2

2 − m1m2r0
2sk0

2 + kz1kz2d
Îsn1

2 − m1
2dsn2

2 − m2
2d

s5d

is the coupling coefficient normalized to the value of the
wave vectork0 of exact Bragg resonance. If the coupling

FIG. 1. Schematic dispersion diagram for a helically corrugated
waveguide.

FIG. 2. Schematic view of a waveguide with a threefold right-
handed helical corrugation.
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coefficient is negligibly small, Eq.(4) splits into two equa-
tions describing the dispersion of the uncoupled mode 1 and
the first Floquet harmonic of mode 2. When the coupling is
small, such thatk!1, and the Bragg conditions(3) are sat-
isfied exactly at the cutoff frequency of mode 2sk0=kt2,kz2

=0d, the eigenwave dispersions are split in the wave vector
by ±kk0 at kz=kB. Further analysis will be concentrated on
properties of the waveW1 (Fig. 1) whose perturbation theory
dispersionkskzd or fskzd (f =kc/2p is the frequency) [Figs.
5(a), 6(a), and 7(a) represents a numerically found selected
root of Eq. (4) plotted with sufficiently small intervals over
thekz axis. In this case, the eigenwave group velocity shown
in the diagrams[Figs. 5(b), 6(b), and 7(b)] is numerically
derived using the following expression:

ygr = c
dk

dkz
. s6d

IV. EXPERIMENTAL METHODS OF DISPERSION
MEASUREMENT

Two different techniques were used to measure the disper-
sion of the eigenwave of a helically corrugated waveguide.
The first method, which relies on the asymmetry of propaga-
tion through the structure of the two circularly polarized
waves, was first applied to helical waveguide dispersion
measurement in Ref.[13]. In the experiments discussed here
the structures had a threefold right-handed helical corruga-
tion (Fig. 2), mB=−3, which in the lowest-frequency region
resonantly coupled a forward-propagating left-handed TE−1,1
mode sm1=−1d and a near-cutoff right-handed TE2,1 mode
sm2=2d. In this case, when the TE−1,1 wave is introduced
through a taper with a gradual increase in the corrugation
amplitude it is transformed into the eigenmodeW1, having a
significantly modified dispersion(designated askz

−), whereas
the right-handed TE1,1 wave remains practically unperturbed
skz

+<kzTE1,1d. The difference in axial wave numbers of two
counterrotating componentsDkz=kz

−−kz
+ forming a linearly

polarized TE1,1 mode results in the rotation of its polariza-
tion vector by the angleDw=DkzL /2, whereL is the effec-
tive length of the helical structure(this effect is well known
for gyrotropic media in optics).

In the experiments, the input radiation was launched as a
fundamental mode of a standard rectangular waveguide and
then transformed into the linearly polarized TE1,1 mode by
passing through a rectangular-to-circular adapter. This mode
consecutively passed a helical up-taper(three and four peri-
ods long with linear increase in the corrugation amplitude), a
long section with a constant corrugation amplitude, and a
helical down-taper to a circular waveguide. A receiver de-
tecting linearly polarized radiation was placed on the axis of
the helical structure and was separated in space to reduce the
reflections. A scalar network analyzer(SNA) was used to
measure the transmittance of the system as a function of
frequency. It is clear from a qualitative analysis that the dif-
ference in the axial wave numbersDkz and, hence, the polar-
ization turnDw is an increasing function of the frequency;
therefore, when using a sufficiently long helical structure and

a fixed orientation of the receiving port, a SNA frequency
scan represented a number of minima(almost zeros) and
maxima [Fig. 3(a)] which corresponded to polarizations of
the output radiation perpendicular or parallel to the polariza-
tion of the receiving port. The frequencies of the minima,fn,
sharply indicated on a logarithmically scaled SNA plot[Fig.
3(a)], were accurately measured and the points for the dis-
persion diagram were calculated as follows:

kz
−sfnd = kzTE1,1sfnd +

2

L
Sp

2
s2n − 1d + wRD,n = 1,2, . . . ,

s7d

where wR is the angle of the azimuthal orientation of the
rectangular waveguide in the receiving port with respect to
that in the launching port. It was assumed that the two helical
tapers of lengthLtap each acted together like a single piece of
waveguide with a regular corrugation of lengthLtap, i.e., in
Eq. (7) L=Lreg+Ltap, whereLreg is the length of the section
with regular corrugation. By varying the anglewR within an
interval of p /2, a sufficient number of points for the disper-
sion diagram can be measured(in the measurements of long
structures for the pulse compressor only one orientation was
needed, while for a shorter structure of the GTWT two
angleswR=0 andwR=p /2 were used).

When the experimental equipment did not allow measure-
ments of the minimal frequencyf1, the uncertainty in the
number of 180° polarization turns[integern in Eq. (7)] was
discovered by measuring structures of different lengths. The
points of the dispersion characteristic found by this method

FIG. 3. Experimental and numerical results for the GTWT
waveguide:(a) SNA measurements;(b) equivalent SNAMAGIC

simulations.
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were interpolated by a polynomial which was used to derive
the group velocity as a smooth function of the frequency in
accordance with Eq.(6). The order of the polynomial was
increased until further increments did not significantly influ-
ence the function that was obtained(fourth and fifth order
polynomials were used in Figs. 5–8 below).

The experimental approach discussed relies on the ap-
proximation that the right-handed(weakly perturbed) wave
in the helical structure has the same dispersion relation as the
TE1,1 mode of the smooth circular waveguide. However, a
large corrugation amplitude can result in a considerable
change in the latter dispersion and therefore lead to system-
atic inaccuracy. Another source of inaccuracy in this method
is the inexact estimation of the effective length of the struc-
ture asL=Lreg+Ltap. Clearly, this inaccuracy can be dimin-
ished by increasing the length of the regular corrugation sec-
tion with respect to the length of the tapers.

The second experimental method was free from the
sources of systematic inaccuracy detailed above. It was
based on the use of a vector network analyzer(VNA ) to
directly and accurately measure the difference between the
phases of the signal at the input and output calibration planes
as a function of the frequency. In fact, the phase difference
Dc between the eigenwave electromagnetic fields taken at
two different cross sections separated by lengthD can be
determined asDc=kzD. Therefore, by measuring the phase
Dc, the eigenwave axial wave numberkz can be measured if
the experimental setup provides excitation of a sufficiently
pure eigenwave in a piece of regularly corrugated wave-
guide,D.

In experiments with helically corrugated structures, the
excitation of an eigenwave was ensured by introducing a
circularly polarized TE1,1 mode to a regularly corrugated
section through the helical taper mentioned above. The cir-
cularly polarized TE1,1 mode(right or left handed) was con-
verted from a linearly polarized wave by passing it through a
broad-frequency-band polarizer having in the middle an el-

liptical cross section azimuthally oriented by +45° or −45°
with respect to the polarization vector of the incident wave.
According to the chosen method, the measured structure con-
sisted of a relatively short section of regular corrugation
which was bounded on each side by a helical taper, polarizer,
circular-to-rectangular adaptor, and waveguide-to-cable

FIG. 4. Results of single-
frequencyMAGIC simulations for
compressor waveguide 1 at fre-
quency of 9.1 GHz: (a) radial
electric field distribution along a
line shifted from z-axis by
0.15 cm; (b) its spatial Fourier
transform.

FIG. 5. Dispersion characteristics for the GTWT waveguide.
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adaptor connected to port 1 and to port 2, respectively, of the
VNA. This configuration allowed the reflections to be mini-
mized and the dispersionskz

−sfd and kz
+sfd to be measured

separately by alternating the rotation of the modes via a 90°
turn in the orientation of the polarizers. The VNA was cali-
brated using a ten-term, LRL calibration that excluded isola-
tion. The calibration planes were each set to be at the con-
nection planes between the elliptical polarizer and the helical
taper at each end of the experimental setup. First, the phase
difference between the calibration planes as a function of
frequency was digitally recorded for the configuration de-
scribed above. Second, the measurements were repeated with
the regular corrugated section removed(see Fig. 8 inset).
The measured phases were then digitally processed resulting
in continuous functions(without 360° jumps) which were
subtracted from each other. This procedure enabled the im-
pact of only the regular helix to be selected. If at the mini-
mum frequency of the measurements,fmin, the condition
kzsfmindD.2p is satisfied then after processing an uncer-
tainty of 2pn (wheren is integer) in the phaseDc still re-
mains, but, at sufficiently short lengthD, it can reliably be
deduced by a rough approximation of the dispersion being
measured.

V. 3D NUMERICAL SIMULATIONS

Two different methods were applied to obtain the dis-
persion characteristics of helically corrugated waveguides

from simulations with the 3D finite-difference time-domain
code MAGIC. The first method, hereinafter referred to as
SNA MAGIC, was analogous to that used for the SNA mea-
surements discussed in Sec. IV. Being a time-domain
code,MAGIC allows the continuous frequency characteristics
of a linear object(like a “cold” hollow structure) to be cal-
culated by performing a temporal Fourier transform of its
response to a microwave pulse having a broad frequency
bandwidth.

Using this option, a configuration similar to the SNA mea-
surements was simulated, namely, a linearly polarized broad-
band pulse formed in the TE1,1 mode was injected into a
circular waveguide and then propagated through a helical
up-taper, regular helix, helical down-taper, and short smooth-
bore section, at the end of which the electric field was ana-
lyzed. The TE1,1 mode was injected and output from the
simulation sampled in a waveguide section far above cutoff
to ensure that the input and output phase velocities were well
matched. In order to simplify the modeling of the helical
waveguide surface, a cylindrical coordinate system was used
in MAGIC. This excluded from the analysis the electromag-
netic fields on thez axis sr =0d, and therefore a temporal
Fourier transform of the radial electric field at a position
slightly shifted from the axis was used as an equivalent to the
SNA frequency scan(Fig. 3), which was then processed in
the same way to obtain the dispersion diagram.

For a relatively short structure, the exact experimental

FIG. 6. Dispersion characteristics for compressor waveguide 1
(inset showsMAGIC approximation of the waveguide cross section).

FIG. 7. Dispersion characteristics for compressor waveguide
2.
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configuration was simulated withMAGIC (Fig. 3) to validate
the method and to optimize the size of the numerical
cells. The dimensions of theMAGIC cells required to ensure
good agreement with results of the measurements were as
follows: dr= l /7 , dw=10°,dz=d/30 (Fig. 6 inset). A further
decrease in all cell dimensions by a factor of 1.5 resulted in
a very small shift(less than 0.43%) of frequencies of the
minima which proved that the numerical simulations had
good convergence and reliability. An advantage of this
method was that oneMAGIC run allowed a wide frequency
region to be instantly analyzed, but in this case it was diffi-
cult to extract information about the electromagnetic field
distribution over the volume(selected plane or line) at a
defined frequency.

The second method of simulation, hereinafter referred to
as single-frequencyMAGIC, set the source of the microwaves
at a defined frequency. In this case an eigenwave of a helical
waveguide was excited by introducing a circularly polarized
TE1,1 mode to the helix through a smooth helical taper simi-
lar to that used in the VNA measurements. After a suffi-
ciently long time to ensure that the electromagnetic field was
established over all the structure, a snapshot of the radial
electric field distribution along a line parallel to thez axis
was taken, and its spatial Fourier transform for a region with
constant amplitude of the corrugation was performed(Fig.
4). If a left-handed TE1,1 mode was introduced(exciting the

eigenwave of main interest) and the line of theE field analy-
sis was sufficiently shifted from the axis, then two clear
maxima were seen in the Fourier transform, one of which at
smaller axial number corresponded to the spatial harmonic
W2 (modified TE2,1 mode) while the other(shifted by the
Bragg periodicity vectorkB) corresponded to the spatial har-
monic W1 of the eigenwave. A small admixture of a right-
handed TE1,1 mode at the input resulted in the appearance of
a maximum at the axial wave numberkz

+ of the weakly per-
turbed wave(Fig. 4). Thus all the axial-wave-number values
of interest can be found at a defined frequency. In addition,
important information about the field magnitude and its dis-
tribution can be obtained using this method. The accuracy of
these simulations for determining the axial wave numbers
improved with increasing length of the helical structure. In
the single-frequencyMAGIC simulations performed, struc-
tures with an operating length of more than 30 periods were
analyzed, which ensured a relative accuracy for the axial
wave numberskz

+ andkz
− of better than 1%.

VI. RESULTS

The results of a study of three different structures with
three-fold helical corrugations used inX-band GTWT and
pulse compression experiments are presented and discussed
below.

One structure, hereinafter referred to as the GTWT
waveguide, had the following parameters: mean radiusr0
=1.4 cm, period d=3.9 cm, corrugation amplitudel
=0.22 cm (coupling coefficientk=0.117), length of regu-
larly corrugated sectionLreg=60 cm, and length of each
taperLtap=12 cm; with the structure able to be disassembled
in two halves. In this case the SNAMAGIC simulations of
the whole length of the structure agreed very well with the
corresponding SNA measurements(Fig. 3). The single-
frequencyMAGIC simulations performed for a structure hav-
ing a 136.5 cms35dd long regularly corrugated section
showed a very small difference of 0.26%(which is less
than the accuracy of the method) between the axial number
kz

+ of the weakly perturbed mode and that of the unperturbed
TE1,1 mode. These simulations resulted also in a difference
of less than 1% for the value of the operating eigenmode
axial wave numberkz

− when comparing the results obtained
from SNA MAGIC, SNA measurements, and the perturbation
theory [Fig. 5(a)]. The difference between the results be-
comes more evident if the frequency dependences of the
group velocity obtained from the different methods are com-
pared. From Sec. I it can be recalled that the eigenwave that
has a constant group velocity over the operating frequency
band is the most favorable operating mode for a GTWT.
Perturbation theory predicts 22% variation of the eigenmode
group velocity for the frequencies between 8 GHz and
10 GHz, whereas the SNAMAGIC simulates a smaller varia-
tion of 17.5%, which is closer to that obtained from the SNA
measurements.

Two other structures used as microwave pulse compres-
sors were analyzed. Both structures had the same mean radus
r0=1.47 cm, periodd=2.89 cm, and length of tapersLtap
=11.56 cm s4dd, but different corrugation amplitudes and

FIG. 8. Dispersion characteristics for compressor waveguide 2
including the VNA measurements[inset shows the data from VNA
before processing, including(solid line) and excluding(dashed line)
an eight-period helix].

BURT et al. PHYSICAL REVIEW E 70, 046402(2004)

046402-6



lengths of the regularly corrugated sections:l =0.175 cmsk
=0.098d, Lreg=184.96 cms64dd for compressor waveguide
1, which could be disassembled into single-period sections,
and l =0.14 cmsk=0.078d, Lreg=208.08 cms72dd for com-
pressor waveguide 2, which could be disassembled into eight
period long sections.

In the case of compressor waveguide 1, the dispersion
obtained from the SNAMAGIC technique, simulating a 14-
period long structure bounded by one-period long tapers, was
reasonably close to that obtained from the SNA measure-
ments[Fig. 6(a)]. The results of the single-frequencyMAGIC
simulations involving a structure with a 35-period long regu-
lar section were in very good agreement with the SNA
MAGIC method results for the operating eigenmode disper-
sion and showed again an insignificant difference between
dispersions of the nonoperating and unperturbed TE1,1
modes[Fig. 6(a)]. In contrast to the GTWT waveguide, the
pulse compression application required the operating group
velocity to be significantly changed over the operating fre-
quency region. Moreover, the minimum value of the group
velocity was very important for the compressor design(the
optimum compressor length is nearly proportional to this
value); therefore the difference in the results obtained by
perturbation theory and those obtained from the measure-
ments andMAGIC simulations, which is not so evident in the
dispersion diagram[Fig. 6(a)], becomes essential if one con-
siders a group velocity vs frequency function[Fig. 6(b)]. The
minimum value predicted by the perturbation theory was
ngrsmind=0.125c, whereas theMAGIC simulations resulting in
ngrsmind=0.155c gave a much better agreement with measure-
mentssngrsmind=0.153cd.

In the case of compressor waveguide 2, for which the best
results were achieved in the experiment on pulse compres-
sion, all the methods to obtain the eigenwave dispersion
characteristics discussed above were applied. Structures hav-
ing lengths of regularly corrugated sections equal to 12 pe-
riods and 35 periods, each bounded by one-period tapers,
were used in SNAMAGIC and single-frequencyMAGIC simu-
lations, respectively(Fig. 7). The whole length of the struc-
ture was used for the SNA measurements whereas an eight-
period long section of regular corrugation bounded by the
tapers was measured with the VNA(Fig. 8). In contrast to
the results for compressor waveguide 1, in the case of com-
pressor waveguide 2 having essentially a shallower corruga-
tion, all the methods including perturbation theory resulted in

practically the same results, which confirmed the reliability
of the MAGIC simulations and indicated the region of param-
eters(coupling coefficientk=0.078) where the simple ana-
lytical approach can give sufficiently high accuracy.

VII. CONCLUSION

Several of the theoretical and experimental methods dis-
cussed are generally applicable for a wide region of param-
eters and can be used for accurate analysis of the dispersive
properties and design of helically corrugated waveguides. A
simple theoretical approach based on the method of pertur-
bation can be used for a preliminary choice of the helical
structure and is more accurate for a relatively small corruga-
tion amplitudeskø0.1–0.15d. Depending on the required
dispersion properties, perturbation theory provides reason-
able or sufficient accuracy. The SNAMAGIC simulations
have the advantage of being able to generate sufficient data
for the dispersion using comparatively limited computer ca-
pabilities and a short run time, but more importantly can be
used for increased accuracy in the analysis of a specific
eigenwave dispersion characteristic. The single-frequency
MAGIC simulations allow an estimation of the systematic in-
accuracy and validation of the results obtained from SNA
MAGIC. Moreover, these simulations enable detailed analysis
of the electromagnetic field inside the structure to be carried
out. The VNA measurements involving a relatively short
piece of the helical waveguide allow the dispersion charac-
teristics to be accurately found before the full-length helix is
constructed, whereas the SNA measurements which rely on
more readily available equipment can be effectively used for
a final “cold” test of a manufactured structure.
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